Tīpoka ki ngā ihirangi matua
Math Solver will be retired on July 7, 2025. Solve math equations with Math Assistant in OneNote to help you reach solutions quickly.
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

8x+2y=46,7x+3y=47
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
8x+2y=46
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
8x=-2y+46
Me tango 2y mai i ngā taha e rua o te whārite.
x=\frac{1}{8}\left(-2y+46\right)
Whakawehea ngā taha e rua ki te 8.
x=-\frac{1}{4}y+\frac{23}{4}
Whakareatia \frac{1}{8} ki te -2y+46.
7\left(-\frac{1}{4}y+\frac{23}{4}\right)+3y=47
Whakakapia te \frac{-y+23}{4} mō te x ki tērā atu whārite, 7x+3y=47.
-\frac{7}{4}y+\frac{161}{4}+3y=47
Whakareatia 7 ki te \frac{-y+23}{4}.
\frac{5}{4}y+\frac{161}{4}=47
Tāpiri -\frac{7y}{4} ki te 3y.
\frac{5}{4}y=\frac{27}{4}
Me tango \frac{161}{4} mai i ngā taha e rua o te whārite.
y=\frac{27}{5}
Whakawehea ngā taha e rua o te whārite ki te \frac{5}{4}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{1}{4}\times \frac{27}{5}+\frac{23}{4}
Whakaurua te \frac{27}{5} mō y ki x=-\frac{1}{4}y+\frac{23}{4}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-\frac{27}{20}+\frac{23}{4}
Whakareatia -\frac{1}{4} ki te \frac{27}{5} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{22}{5}
Tāpiri \frac{23}{4} ki te -\frac{27}{20} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{22}{5},y=\frac{27}{5}
Kua oti te pūnaha te whakatau.
8x+2y=46,7x+3y=47
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}8&2\\7&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}46\\47\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}8&2\\7&3\end{matrix}\right))\left(\begin{matrix}8&2\\7&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&2\\7&3\end{matrix}\right))\left(\begin{matrix}46\\47\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}8&2\\7&3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&2\\7&3\end{matrix}\right))\left(\begin{matrix}46\\47\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&2\\7&3\end{matrix}\right))\left(\begin{matrix}46\\47\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{8\times 3-2\times 7}&-\frac{2}{8\times 3-2\times 7}\\-\frac{7}{8\times 3-2\times 7}&\frac{8}{8\times 3-2\times 7}\end{matrix}\right)\left(\begin{matrix}46\\47\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{10}&-\frac{1}{5}\\-\frac{7}{10}&\frac{4}{5}\end{matrix}\right)\left(\begin{matrix}46\\47\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{10}\times 46-\frac{1}{5}\times 47\\-\frac{7}{10}\times 46+\frac{4}{5}\times 47\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{22}{5}\\\frac{27}{5}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{22}{5},y=\frac{27}{5}
Tangohia ngā huānga poukapa x me y.
8x+2y=46,7x+3y=47
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
7\times 8x+7\times 2y=7\times 46,8\times 7x+8\times 3y=8\times 47
Kia ōrite ai a 8x me 7x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 7 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 8.
56x+14y=322,56x+24y=376
Whakarūnātia.
56x-56x+14y-24y=322-376
Me tango 56x+24y=376 mai i 56x+14y=322 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
14y-24y=322-376
Tāpiri 56x ki te -56x. Ka whakakore atu ngā kupu 56x me -56x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-10y=322-376
Tāpiri 14y ki te -24y.
-10y=-54
Tāpiri 322 ki te -376.
y=\frac{27}{5}
Whakawehea ngā taha e rua ki te -10.
7x+3\times \frac{27}{5}=47
Whakaurua te \frac{27}{5} mō y ki 7x+3y=47. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
7x+\frac{81}{5}=47
Whakareatia 3 ki te \frac{27}{5}.
7x=\frac{154}{5}
Me tango \frac{81}{5} mai i ngā taha e rua o te whārite.
x=\frac{22}{5}
Whakawehea ngā taha e rua ki te 7.
x=\frac{22}{5},y=\frac{27}{5}
Kua oti te pūnaha te whakatau.